Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nat Biotechnol ; 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2231897

ABSTRACT

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.

2.
Sci Adv ; 7(19)2021 05.
Article in English | MEDLINE | ID: covidwho-1226702

ABSTRACT

The endoplasmic reticulum (ER) is a central eukaryotic organelle with a tubular network made of hairpin proteins linked by hydrolysis of guanosine triphosphate nucleotides. Among posttranslational modifications initiated at the ER level, glycosylation is the most common reaction. However, our understanding of the impact of glycosylation on the ER structure remains unclear. Here, we show that exostosin-1 (EXT1) glycosyltransferase, an enzyme involved in N-glycosylation, is a key regulator of ER morphology and dynamics. We have integrated multiomics and superresolution imaging to characterize the broad effect of EXT1 inactivation, including the ER shape-dynamics-function relationships in mammalian cells. We have observed that inactivating EXT1 induces cell enlargement and enhances metabolic switches such as protein secretion. In particular, suppressing EXT1 in mouse thymocytes causes developmental dysfunctions associated with the ER network extension. Last, our data illuminate the physical and functional aspects of the ER proteome-glycome-lipidome structure axis, with implications in biotechnology and medicine.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Animals , Endoplasmic Reticulum/metabolism , Glycosylation , Mammals , Mice , Protein Processing, Post-Translational , Protein Transport
3.
FEBS J ; 288(17): 5148-5162, 2021 09.
Article in English | MEDLINE | ID: covidwho-1189682

ABSTRACT

Small linear motifs targeting protein interacting domains called PSD-95/Dlg/ZO-1 (PDZ) have been identified at the C terminus of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins E, 3a, and N. Using a high-throughput approach of affinity-profiling against the full human PDZome, we identified sixteen human PDZ binders of SARS-CoV-2 proteins E, 3A, and N showing significant interactions with dissociation constants values ranging from 3 to 82 µm. Six of them (TJP1, PTPN13, HTRA1, PARD3, MLLT4, LNX2) are also recognized by SARS-CoV while three (NHERF1, MAST2, RADIL) are specific to SARS-CoV-2 E protein. Most of these SARS-CoV-2 protein partners are involved in cellular junctions/polarity and could be also linked to evasion mechanisms of the immune responses during viral infection. Among the binders of the SARS-CoV-2 proteins E, 3a, or N, seven significantly affect viral replication under knock down gene expression in infected cells. This PDZ profiling identifying human proteins potentially targeted by SARS-CoV-2 can help to understand the multifactorial severity of COVID19 and to conceive effective anti-coronaviral agents for therapeutic purposes.


Subject(s)
COVID-19/genetics , Host-Pathogen Interactions/genetics , PDZ Domains/genetics , SARS-CoV-2/genetics , COVID-19/virology , Carrier Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , Humans , Kinesins/genetics , Myosins/genetics , Protein Binding/genetics , Protein Interaction Domains and Motifs/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 13/genetics , SARS-CoV-2/pathogenicity , Viral Envelope Proteins/genetics , Viroporin Proteins/genetics , Virus Internalization , Virus Replication/genetics , Zonula Occludens-1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL